点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:大发彩票APP - 360百科
首页>文化频道>要闻>正文

大发彩票APP - 360百科

来源:大发彩票客户端2024-08-30 17:48

  

【寻味中华】重庆火锅:涮得了山珍海味 烫得了边角碎料******

  中新社重庆1月24日电 题:重庆火锅:涮得了山珍海味 烫得了边角碎料

  中新社记者 刘相琳

  夜幕降临,重庆大街小巷中弥散着麻与辣的快感。一炉炉火锅渐次沸腾,翻滚的牛油,迸发出麻辣鲜香,令人欲罢不能。

资料图为重庆市民通过手机下单取回家的火锅外卖。 中新社记者 周毅 摄

  火锅是重庆人聚会首选,几人围坐一口锅,毛肚的劲道,鸭肠的爽嫩,酥肉的香脆……觥筹交错间口腹之欲得到极大满足。“每天吃火锅遭不住(重庆话,意为受不了),一周不吃也遭不住。”重庆人吴思这样评价。

  重庆火锅协会会长陈国华说,重庆火锅有水派和陆派起源之说。普遍认为,清末民初,重庆是长江上游航运重镇,为了填饱肚子,船夫们常在江边随地搭起锅灶,用沿江两岸屠宰场丢弃的廉价动物内脏和牛油渣,拌上葱姜花椒等佐料一起下锅烫煮,这就是重庆火锅的雏形。

资料图为“大火锅”亮相重庆街头,吸引食客尝鲜。 中新社记者 周毅 摄

  火锅匠人们总结出重庆火锅好吃的标准是“三水一堆”:吃了额头冒汗水;辣得流眼泪水;麻得流鼻涕水;桌上擦“三水”的纸用了“一堆”。

  辣,不是重庆火锅的唯一标签。好吃的关键在香辛料之间复杂的配比。如今,重庆中心城区有超过3万家火锅店,外地人吃来大同小异,当地人却因底料的细微差别,分出“远近亲疏”。

资料图为重庆市民通过手机下单在家吃火锅。 中新社记者 周毅 摄

  重庆红汤火锅以味复合醇厚、重油重香著称。先将牛油放入旺火锅中熬化至170摄氏度左右,再倒入豆瓣、大蒜、大葱、生姜、香菜等,待熬成红油后再炒香,这是传统火锅底料的灵魂。

  国家级中式烹调技能大师工作室创建人、知名火锅专家王文军说,正宗的重庆火锅底料,讲究麻、辣、鲜、香。牛油品质、原材料的选择配比、炒制的时长和温度,任何一个细节都可能成为影响味道的关键因素。

  王文军说,辣椒让牛油增色去腥,豆瓣酱提鲜,大蒜增香,花椒增麻,佐料在热油中彼此融合。而醪糟则是不少火锅底料的秘密,酵母菌为锅底注入了生物驱动。匀速搅拌之下烟气升腾,两三个小时“寸步不离”的调制,冷却后再静待发酵7天,待各种原材料味道充分释放融合,才能成就饭桌上的麻辣鲜香。

  把火锅分成九宫格,是重庆人的发明。中间格火大,要烫涮吃,东南西北四格,火温合适,不易煳锅,适合煮菜,四个边格,火力最小,适合焖煮食材。

资料图为服务员为食客在麻辣火锅里煮汤圆。 中新社记者 周毅 摄

  煮菜顺序也有讲究,鲜鸭血和厚豆干要在没开火前进锅。底料烧开后,真正的老饕会先丢一把小葱和豆芽,滚上几十秒,将火锅的底味彻底唤醒。在东南西北四个横格中煮上老肉片和水滑肉等耐煮荤菜,中间格冒油泡时,才是烫菜的最好时机。

  烫的核心不仅是熟,还要裹上油,让菜品吸味。鸭肠烫卷,毛肚烫泡,黄喉烫弯,腰片烫变色,多一分就老,少一分则不熟,烫涮之间菜盘已见底。

  重庆火锅既涮得了山珍海味,也烫得了边角杂碎。鸭血、黄喉这些在其他菜系中被视为“鸡肋”的食材,却是重庆火锅最受欢迎的选择。而对脑花、牙梗等偏门食材的喜爱,更是将普通食客和老饕区分开来。

  重庆火锅也正悄然发生变化。电子采购平台、机器炒底料、一次性锅底汤料的推广应用,用餐环境、调味技能等方面的改进,让纯正味道不会丢失,接受人群更广泛。

  据重庆火锅协会统计,目前,小天鹅、德庄、刘一手等多家本土火锅企业,已累计在海外开店超600家,分布在20多个国家和地区的200多个城市。

  夜色下重庆又开始沸腾,辣椒花椒“翻江倒海”,鸭肠毛肚“七上八下”的画面,依然不分季节地每天在这座城市里反复上演。(完)

                                                                        • 大发彩票APP

                                                                          诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

                                                                            相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

                                                                            你或身边人正在用的某些药物,很有可能就来自他们的贡献。

                                                                          诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                                                            2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

                                                                            一、夏普莱斯:两次获得诺贝尔化学奖

                                                                            2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

                                                                            今年,他第二次获奖的「点击化学」,同样与药物合成有关。

                                                                            1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

                                                                          诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                                                            过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

                                                                            虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

                                                                            虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

                                                                            有机催化是一个复杂的过程,涉及到诸多的步骤。

                                                                            任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

                                                                            不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

                                                                            为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

                                                                            点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

                                                                            点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

                                                                            夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

                                                                            大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

                                                                            大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

                                                                            大自然的一些催化过程,人类几乎是不可能完成的。

                                                                            一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

                                                                             夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

                                                                            大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

                                                                            在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

                                                                            其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

                                                                            诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

                                                                          诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                                                            夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

                                                                            他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

                                                                            「点击化学」的工作,建立在严格的实验标准上:

                                                                            反应必须是模块化,应用范围广泛

                                                                            具有非常高的产量

                                                                            仅生成无害的副产品

                                                                            反应有很强的立体选择性

                                                                            反应条件简单(理想情况下,应该对氧气和水不敏感)

                                                                            原料和试剂易于获得

                                                                            不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

                                                                            可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

                                                                            反应需高热力学驱动力(>84kJ/mol)

                                                                            符合原子经济

                                                                            夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

                                                                            他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

                                                                            二、梅尔达尔:筛选可用药物

                                                                            夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

                                                                            他就是莫滕·梅尔达尔。

                                                                          诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                                                            梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

                                                                            为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

                                                                            他日积月累地不断筛选,意图筛选出可用的药物。

                                                                            在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

                                                                            三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

                                                                            2002年,梅尔达尔发表了相关论文。

                                                                            夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

                                                                          诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                                                            三、贝尔托齐西:把点击化学运用在人体内

                                                                            不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

                                                                          诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                                                            虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

                                                                            诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

                                                                            她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

                                                                            这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

                                                                            卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

                                                                            20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

                                                                            然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

                                                                            当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

                                                                            后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

                                                                            由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

                                                                            经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

                                                                            巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

                                                                            虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

                                                                            就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

                                                                            她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

                                                                            大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

                                                                          诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                                                            2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

                                                                          诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

                                                                            贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

                                                                            在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

                                                                            目前该药物正在晚期癌症病人身上进行临床试验。

                                                                            不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

                                                                          「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

                                                                            参考

                                                                            https://www.nobelprize.org/prizes/chemistry/2001/press-release/

                                                                            Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

                                                                            Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

                                                                            Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

                                                                            https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

                                                                            https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

                                                                            Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

                                                                            (文图:赵筱尘 巫邓炎)

                                                                          [责编:天天中]
                                                                          阅读剩余全文(

                                                                          相关阅读

                                                                          推荐阅读
                                                                          大发彩票官网网址保时捷女司机醉驾 酒精检测时撒娇:你们很过分哎
                                                                          2024-09-13
                                                                          大发彩票登录曼联丢掉争四的希望 德赫亚没资格要高薪
                                                                          2024-02-13
                                                                          大发彩票漏洞 生母将新生儿弃在便坑,检察院支持起诉撤销其监护人资格
                                                                          2024-10-17
                                                                          大发彩票手机版【冬奥画刊】这速度,肉眼可见
                                                                          2024-04-01
                                                                          大发彩票规则女子怀疑男友出轨 在其内裤蹭辣椒酱泄愤
                                                                          2024-07-03
                                                                          大发彩票返点 HTC 5G手机曝光:重出江湖是否有戏?
                                                                          2023-12-21
                                                                          大发彩票app开年稳经济地方观察:政策礼包激发市场主体活力
                                                                          2023-11-26
                                                                          大发彩票官方推动能源转型 赋能绿色发展
                                                                          2024-06-25
                                                                          大发彩票娱乐世界各地奇特有趣的房子
                                                                          2024-08-22
                                                                          大发彩票交流群 日本明仁天皇将退位 外交部:为中日关系做出过积极贡献
                                                                          2024-04-28
                                                                          大发彩票充值完成365天打卡,赢「LOFTER生活家」 认证
                                                                          2024-09-05
                                                                          大发彩票邀请码大卖融合套餐产品,运营商无异于饮鸩止渴
                                                                          2023-12-16
                                                                          大发彩票技巧海润债务危机中停产,华君集团被拖累成“老赖”
                                                                          2024-02-25
                                                                          大发彩票官网平台返还文物归国路为何走了12年
                                                                          2024-01-30
                                                                          大发彩票软件最高法出台公司法新司法解释加强股东权益保护
                                                                          2024-08-01
                                                                          大发彩票必赚方案哈登重提莱纳德遭勇士垫脚:大家知道发生了什么
                                                                          2023-12-18
                                                                          大发彩票玩法《机动战士高达》与VAN JACKET联动服装发售决定
                                                                          2024-09-02
                                                                          大发彩票攻略艾滋病病毒逃脱人类防御系统机理揭示
                                                                          2024-04-05
                                                                          大发彩票网投中国家长花百万美元送女儿进耶鲁
                                                                          2024-10-16
                                                                          大发彩票官网NBA-火箭负勇士 哈登强攻上篮
                                                                          2024-09-15
                                                                          大发彩票代理 2600枚东风快递 不够中国一次用?美:80枚都不敢签收
                                                                          2024-09-07
                                                                          大发彩票客户端下载首度披露 重庆公安局原局长何挺下属被双开
                                                                          2024-04-01
                                                                          大发彩票开户丰田搁置2021年为新车搭载DSRC技术计划
                                                                          2023-11-29
                                                                          大发彩票骗局 许志安华语榜中榜惨被除名 杨千嬅捧双料大奖被赞实至名归
                                                                          2024-01-08
                                                                          加载更多
                                                                          大发彩票地图